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ABSTRACT
We fabricated magnetic tunnel junctions (MTJs) with FeAlSi free layers and investigated the tunnel magnetoresistance (TMR) properties. We
found that the temperature and bias voltage dependences of the TMR effect in FeAlSi-MTJs were almost the same as MTJs with Fe free layers
despite the low Curie temperature of FeAlSi. In the inelastic electron tunneling spectroscopy measured at low temperatures, the relatively large
cutoff energy of magnon excitation at the FeAlSi and MgO interface was confirmed. In addition, we studied for the first time the exchange
stiffness constant of FeAlSi films by Brillouin light scattering. The determined value of the stiffness constant of FeAlSi was 14.3 (pJ/m), which
was similar to that of Fe. Both the large magnon cutoff at the interface and the stiffness constant of FeAlSi are considered to be the reason for
the good temperature and voltage dependences of FeAlSi-MTJs.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0189570

Sendust alloy (Fe73.7Al9.7Si16.6 atm %, henceforth “Sendust”)
is a famous soft magnetic material invented by Masumoto and
Yamamoto in 1937.1 In our previous studies,2,3 we demonstrated the
excellent soft magnetic properties of nm-Sendust films comparable
to that of bulk for the first time and discovered the mechanism of the
soft magnetic properties of Sendust alloy, including bulk and film
forms.2 These studies suggested the possibility of applying Sendust
films into a Magnetic Tunnel Junction (MTJ)-based magnetic
sensor, where external magnetic fields are detected using the tun-
nel magnetoresistance (TMR) effect. The soft magnetic properties of
ferromagnetic materials for free layers and high TMR ratios of MTJs
are simultaneously required to attain a high sensitivity of MTJ-based
sensor. Sendust with a good soft magnetic property can be a good

candidate for the free layer in MTJs because Sendust is expected
to show a high TMR ratio. Sendust has the similar composition
and crystal structure as Fe, which leads to a high TMR ratio by the
effect of Δ1 coherent tunneling.4–6 We hypothesized that Δ1 coher-
ent tunneling would happen in MTJs using Sendust electrodes and
investigated the TMR properties of MTJs using Sendust free layers.
In our previous work,7 we successfully observed a high TMR ratio
of 121% at RT, which showed the big potential of Sendust films as
the free layer material for a MTJ sensor.8 To study the electronic
structure of Sendust, we have also investigated the tunnel anisotropic
magnetoresistance (TAMR) effect at low temperatures. The TAMR
ratio is defined as the ratio between the resistance of in-plane parallel
state and the resistance of out-of-plane parallel state, which provided
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us the information about the interfacial resonance state (IRS) of the
ferromagnetic layer.9 We observed a TAMR ratio of 1%10 compara-
ble to Fe,9 which showed that Sendust had the IRS at the interface
with MgO similar to Fe.

In this paper, we systematically studied the temperature and
bias voltage (VBias) dependences of the TMR effect in MTJs with
Sendust electrodes. Basically, the TMR ratio decreases with the
increasing temperature and VBias increases, and the TMR reduction
is mainly caused by magnetic fluctuations in ferromagnetic layers
and the large resistance drop in the anti-parallel configuration due
to the inelastic tunneling effect.6 The previous studies suggested
that the TMR ratio reduction against temperature and bias voltage
is related to magnon excitations in ferromagnetic layers.11–15 The
Curie temperature (Tc) of bulk-Sendust is previously reported as
733 K,16 which is much smaller than that of Fe (1043 K).17 As a
result, this relatively low Tc can cause the large temperature and
bias voltage dependences in Sendust-MTJs. Since inelastic tunneling
spectroscopy (IETS) is one of the powerful tools to investigate the
magnon excitation in MTJs, the IETS measurement was carried out
for MTJs with Sendust electrodes in this study. In addition, although
the exchange stiffness constant (A) of ferromagnetic layers also affect
the temperature and bias voltage dependences in MTJs,18 there were
no studies on the A of Sendust films. In this study, we adopted the
Brillouin Light Scattering (BLS) technique to directly investigate the
A for Sendust. The investigations of A would also be useful for the
studies of micromagnetic calculations and the spin dynamics for new
spintronic materials of Sendust.

The stacking structure of the MTJ film, which was used for
the temperature dependence of the TMR effect, was as follows:

MgO(001)-substrate/MgO(20)/Sendust(30)/MgO(2)/Co40Fe40B20
(3)/Ru(0.85)/Co75Fe25(5)/Ir22Mn78(10)/Ta(5)/Ru(10) (in nm). The
Fe74.8Al11.1Si14.1 (atm. %) films were deposited and annealed with
the annealing temperature (Ta) of 400 ○C. After the depositions of
full stacking layers, the sample was annealed with Ta = 325 ○C under
a magnetic field of 1 T to fix the magnetization in the pinned layer,
to improve the crystallinity of MgO barrier layer,19 and to crystallize
the Co–Fe–B layer. The composition of Sendust films and Ta were
the optimized values in our previous study,8 where good crystallinity
and (001)-orientation were confirmed using x-ray diffraction (XRD)
and Transmission Electron Microscopy (TEM). In addition to the
measurement for temperature dependence, the VBias dependence of
conductance and inelastic electron tunneling spectroscopy (IETS)
was also conducted using a physical property measurement system
(PPMS by Quantum Design). The stacking for BLS measure-
ments was as follows: MgO (001)-substrate/MgO(20)/Sendust(10)
Ta = 400 ○C/Ta(5). The composition of Sendust was Fe73.7Al11.7Si14.6
(atm. %), which was almost the same as that of MTJ sample. BLS
was conducted following the previous work,20 where a laser with
a wavelength of λ = 532 nm was projected onto the surface at an
angle θ from the surface normal, in a plane perpendicular to the
external field H. The component of the magnon wave vector that
is in-plane is oriented along the y axis, and its wave vector transfer
is represented as k = (4π/λ) sin θ.21 The BLS results are affected by
the Dzyaloshinskii–Moriya interaction (DMI),22–24 which is also the
first investigation for Sendust films by this study. We conducted
two types of BLS measurements: H = 0.2–0.6 T with θ = 0○ and
θ = 0○–45○ with H = 0.2 T. We can determine A based on those two
measurements and the following equation:25,26
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2π

√
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where fDE and fPSSW are the frequencies of Damon–Eshbach (DE)
mode and Perpendicular Standing Spin Wave (PSSW) mode, respec-
tively, γ is the gyromagnetic ratio, H is the external field (in-plane),
Ms is the saturation magnetization, Hk_eff is the effective in-plane
anisotropy field, and D is a DMI constant. The fitting parameters
were γ/2π (GHz/T), μ0Hk_eff (T), A (pJ/m), and t, where t was
included to determine the thickness of Sendust exactly. The sample
for BLS was also measured using a vibrating sample magnetometer
(VSM) to determine Ms for the prepared sample.

Figure 1(a) shows the temperature dependence of magnetore-
sistance curves for an MTJ using the Sendust free layer. Figure 1(b)
summarizes the temperature dependence of TMR ratio, and the
inset shows the normalized TMR ratio (TMR ratio/TMR ratio
@10 K). We confirmed that the TMR ratio increased monotonously
from 104.8% at 300 K to 179.8% at 10 K, and the ratio of (TMR
ratio at 300 K) to (TMR ratio at 10 K) is 0.58. In other previous

studies of MTJs using Fe electrodes,27 the TMR ratio also increased
monotonously, from 170% at 300 K to 318% at 10 K. The (TMR
ratio at 300 K)/(TMR ratio at 10 K) ratio for Fe-MTJs is 0.53,
which is similar to Sendust-MTJs in our study. These results show
that the temperature dependence of TMR ratio for Sendust-MTJs
and Fe-MTJs is almost the same. Meanwhile, the (TMR ratio at
300 K)/(TMR ratio at 10 K) ratio for Heusler-MTJs in other previous
studies is much lower than these values (0.31).28 This large temper-
ature dependence of TMR ratio is affected by the reduction in spin
polarization at the interface of Heusler alloys.28 These results proved
the thermal stability of TMR ratio and spin polarization in Sendust-
MTJs comparable to Fe-MTJs. Figure 1(c) shows the temperature
dependence of resistance–area (RA) product for the parallel (RAP)
and anti-parallel (RAAP) configurations. We found that the temper-
ature dependence of RAAP is much larger than that of RAP similar
to previous studies.6,27,29,30 The increase in RAAP with a decrease in
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FIG. 1. Temperature dependence of (a) magnetoresistance curve; inset: TMR ratio
normalized by the value @10 K compared with other MTJs, (b) TMR ratio, and (c)
RP and RAP for MTJs using Sendust electrodes.

temperature is considered to be the suppression of spin-flip tunnel-
ing caused by magnon excitations at the interface between Sendust
and MgO.31

Figure 2(a) shows the VBias dependence of TMR ratio evalu-
ated by dI/dV–V curves for the parallel and anti-parallel magnetic
configurations in Sendust-MTJs shown in Fig. 1. The TMR ratio
drop with a finite VBias is considered to be mainly affected by
the magnon excitation.14 Vhalf, which is the VBias where the TMR
ratio is half of that at VBias = 0 V, is about 300 mV. This value
is almost the same as a previous study for Fe-MTJs.32 Both the
temperature and bias-voltage dependences of the TMR effect for
the Sendust- and Fe-MTJs are almost the same, which indicates
that the Sendust/MgO interface appears to behave similar to the
Fe/MgO interface. For investigating the magnon excitation at the
Sendust/MgO interface in detail, we measured the IETS for the AP
state at 1.6 K using PPMS [Fig. 2(b)]. We successfully measured
the IETS with very low noise, which allowed us to observe vari-
ous clear peaks. The peak around VBias ∼ 80 mV is supposed to
be caused by the phonon excitation in the MgO barrier, which is
typically observed in some previous studies.33–35 The strong peak
at VBias ∼ 30 mV is considered to be originating from the magnon
excitation.34 This is supposed to be related to the temperature depen-
dence of RAAP in Fig. 1(c). In Fig. 2(b), this magnon contribution
exists up to VBias = 150–200 mV, which is comparable to Fe-MTJs
(150–200 mV)9,36 and larger than Heusler-MTJs (<100 mV).34 This
voltage is called maximum magnon cutoff energy Em,37 which is
related to Tc as follows:

Em =
3kBTc

S + 1
, (3)

where S is the spin of a ferromagnet. Tc for Sendust is calculated to
be about 1000 K from Eq. (3), which is similar to Fe (1043 K17). The
evaluated large Tc of Sendust comparable to Fe corresponds to the
small temperature dependence of TMR ratio and high Vhalf. How-
ever, the estimated Tc of 1000 K in Sendust-MTJs is obviously higher
than a previous report of Tc for Sendust (733 K16). The first possi-
ble reason for high Tc of Sendust is that the composition and the
atomic ordering of Sendust films in this work are different from a
previous study.2 The second possible reason is that the composition
of Sendust at the interface with MgO barrier is Fe-rich because of
diffusion of Si and Al atoms during the annealing process.

Next, we investigated the A by BLS and its relationship with the
temperature dependence of TMR ratio. Figure 3 shows the magneti-
zation curve of the Sendust sample prepared for BLS measurements.
The measured coercivity is less than 1 Oe similar to our previous
studies,2,8 which means that we successfully fabricated Sendust films
with ideal soft magnetic properties. Ms is identified to be 0.0011 emu,
so we can determine the Mst value of 0.0012 emu/cm2 (the sputtered
area was 0.92 cm2), which are used for fitting with Eqs. (1) and (2).

Figure 4 shows the results of BLS measurements for the pre-
pared Sendust film, where we clearly observed the DE and PSSW
mode peaks. We only find the PSSW mode (n = 1) because PSSW
modes (n ≧ 2) are too weak as their thickness is thin (10 nm). Both
peaks of DE and PSSW modes increase with a higher H in Fig. 4(a),
whereas almost only the DE mode peak increases with a higher θ (k)
in Fig. 4(b), as theoretically predicted and shown in Eqs. (1) and (2).
Figure 4(c) shows the k dependence of the difference between the
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FIG. 2. VBias dependence of the (a) TMR ratio and (b) IETS for AP configuration measured at 1.6 K.

APL Mater. 12, 021101 (2024); doi: 10.1063/5.0189570 12, 021101-4

© Author(s) 2024

 06 February 2024 23:05:22

https://pubs.aip.org/aip/apm


APL Materials ARTICLE pubs.aip.org/aip/apm

FIG. 3. VSM result of the prepared sample for BLS.

Stokes (S) peak (negative frequency) and the anti-Stokes (AS) peak
(positive frequency) defined as follows:38

Δ f DE = f S − f AS =
2γ

πMs
Dk. (4)

We tried the fitting of raw data using Eq. (4). The calculated D was
4.5 ± 1.9 (μJ/m2), which suggests negligible DMI values because of
small value with a relatively large error. This result corresponds to
that we could not observe a linear behavior in Fig. 4(c). Therefore,
we conclude that there is no DMI in Sendust films.

Since there is no difference between the Stokes peak and the
anti-Stokes peak, we summarized only the Stokes peak’s dependence
on H and k in Figs. 5(a) and 5(b), respectively. We fitted both DE
and PSSW mode peaks using Eqs. (1) and (2), respectively and deter-
mined the film thickness and various magnetic constants (Table I).
We confirm the reasonable thickness of 9.95 nm comparable to that
determined during film growth, which means that our fittings are
successful. The estimated A for Sendust was 14.3 (pJ/m), which is
the first time determination of A of Sendust film.

Finally, we summarize A, Tc, (TMR@300 K)/(TMR@10 K), and
Em for Sendust and Fe in Table II, where all these values should be
correlated as mentioned in this paper. The results for Sendust and
Fe are similar except for Tc, and this reason for discrepancy of Tc
is already mentioned previously. Further investigation is needed to

clarify this point. Our study also revealed that TMR reduction with
finite T and VBias in Sendust-MTJs is significantly lower than that in
Heusler-MTJs. The reason of the large TMR reduction in Heusler-
MTJs despite a large A (Tc) is considered to be due to the local A (Tc)
reduction at the interface with MgO,31–33 and thus, we understand
that there is minimal such effect in Sendust-MTJs.

In summary, we carried out the investigation on the temper-
ature and bias-voltage dependences of the TMR effect in MTJs
with Sendust electrodes. The temperature dependence of TMR ratio
for MTJs using Sendust free layers behaved similar to the MTJs
using Fe electrodes, where the (TMR ratio at 300 K)/(TMR ratio
at 10 K) ratio for Sendust- and Fe-MTJs was 0.58 and 0.53, respec-
tively. The VBias dependence of TMR ratio for Sendust-MTJs was
also similar to that of Fe-MTJs, where both Vhalf values were about
300 mV. By measuring the IETS for Sendust-MTJs, we observed
the peak that was considered to have originated from the magnon
excitation of Sendust interface with MgO, and the observed Em was
comparable to that of MTJs with an Fe electrode. BLS measure-
ments provided us the first information about A in Sendust films.
The identified value was 14.3 (pJ/m), which was almost the same
as the previous studies of Fe. These large Em and stiffness constant
are consistent with the observed small temperature and bias-voltage
dependences of the TMR effect in Sendust-MTJs. The lower temper-
ature and bias-voltage dependences in MTJs with Sendust electrodes
are highly beneficial for their application as TMR sensors with a large
sensitivity.
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FIG. 4. BLS results for (a) H dependence and (b) k
dependence. (c) Evaluation for DMI in Sendust films.
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FIG. 5. Peak position and fitting results for BLS.
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TABLE I. Fitting results for γ, Hk_eff, and A for the prepared Sendust films.

t (nm) γ
2π (GHz/T) μ0Hk_eff (T) A (pJ/m)

9.95 23.4 1.3 14.3

TABLE II. Summary of A and temperature dependence of TMR ratio for Sendust, Fe,
and Heusler alloy.

Ferromagnetic
material Tc (K) A (pJ/m)

(TMR@300 K)/
(TMR@10 K) Em (meV)

Sendust 73316 14.3 0.58 150–200
Fe 104317 18.539 0.5327 150–2009,36

Heusler alloy 98518 23.518 0.3128
<10034
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